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LETTER TO THE EDITOR 

Cluster size distribution above the percolation threshold 

T C Lubensky and A J McKane' 
Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, 
USA 

Received 12 February 1981 

Abstract. We discuss how the cluster size distribution above the percolation threshold is 
related to the existence of metastable states of the Potts model. We thus find that the 
average number of clusters per site containing n sites is given by C ( n ) -  
n-@' exp(-constant where d is the dimensionalityof the lattice. The exponent B'is 
given for a range of values of d. 

In the problem of percolation, bonds (sites) on a lattice are occupied with probability p 
and vacant with probability 1 - p .  Clusters are defined as sets of sites connected by 
occupied bonds (sets of contiguous occupied sites). At a critical probability p c ,  an 
infinite cluster forms and exists for all p >pc .  Cluster statistics are described by the 
cluster size distribution function, C ( n ) ,  which is the average number of clusters per site 
containing n sites. For p < p c ,  it is now well established that C ( n )  satisfies the scaling 
equation 

C ( n )  = n-'f[(pc-p)*nl (1) 

where T and A are critical exponents associated with the percolation transition. The 
function f(z) is a constant at z = 0, but for large t it is proportional to de-') e-*', 
where A is a constant and 0 is the critical exponent associated with the statistics of 
lattice animals (Harris and Lubensky 1980). For p > p c ,  C ( n )  has a structure of the form 

~ ( n )  = n-"exp[ -~ (p  -pc)nr] (2) 
where 5 = 1 - l / d  and d is the dimensionality of the lattice. The exponent 5 is therefore 
not equal to unity as for p < pc .  

The form for C ( n )  given by (2) was first suggested by Kunz and Souillard (1978a, b) 
who placed rigorous bounds on C ( n ) .  Monte Carlo experiments have also verified that 
5 = 4 in two dimensions (see Stauffer (1979) for a review). More recently, the exponen- 
tial factor in equation (2) was derived by considering droplet solutions in a field 
theoretic formulation of the percolation problem (Harris and Lubensky 1980). The 
purpose of this Letter is to give a more thorough treatment of the droplet solutions, and 
in particular to calculate the exponent 8'. 

Before discussing the droplet solutions that lead to equation ( 2 ) ,  it is necessary to 
review briefly the connection between percolation and the one-state Potts model. In 
the Potts model, each site x on the lattice containing N sites can be in any one of s 
different states specified by a variable ~ ( x ) .  The Potts model Hamiltonian is then 

H = - J  1 [sr?(a(x),c+(x'))-l]-h C[sr?(Cr(x) ,  11-11. ( 3 )  
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With some manipulations, one can show that the partition function for this model is 
given by  

where P(9) is the probability of occurrence of a particular configuration 9 of occupied 
and unoccupied bonds and K(%; n )  is the number of clusters per site in configuration ie 
containing n sites (Fortuin and Kasteleyn 1972, Lubensky 1979). Note that since 
Z o P ( i e )  = 1, Zs(h)  must satisfy 

lim Zs(h)  = 1. ( 5 )  
s-tl 

The generating function for C ( n )  is readily obtained from (4): 

lim 1 1 In z , ( h )  = ~ ( h )  = 1 ~ ( n )  e - h n  (6) 
s-+l s - 1 N n 

so that for large n 

1 
C ( n )  = - J dh ehnF(h)  

21ri c - i w  
(7) 

where c is such that all the singularities of F ( h )  lie to the left of the contour. 

and so closing the contour in (7) gives 
It is clear that if C ( n )  is to satisfy equation (2), F ( h )  must have a branch cut for h < 0, 

(8) 
C ( n ) = - [  l o  dh eh" ImF(h)=- [  1 "  dlhle-lh'" ImF(-lhI) 

T -w T o  

where In Im F(-jhl) - I ! z - ( ~ - ~ ) .  This singularity is of exactly the same form as found by 
Langer (1967) in his classic analysis of metastability in the Ising model in an external 
magnetic field h. We are' thus led to a study of metastability and critical droplets in the 
one-state Potts model. 

To proceed, we employ a now standard field theoretic representation of the Potts 
model 

z = [ D+r exp(--H[+11) (9) 

where H[+I] has an infinite power-series representation in terms of the (s-1)- 
dimensional field +[. For our present purposes, it is sufficient to consider properties near 
p c  where H is well approximated by 

where the repeated index summation convention is understood, r - ( p  - p,)  and where 

Here e? are vectors of modulus (s 

2 e ? = O ,  t eye;; = s~ l l , ,  
U = l  a = l  

(11) 1 hl = hel .  

1)'" satisfying (Zia and Wallace 1975) 
s-1 

1=1 
eye;' =ss**'-I. 
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Fields corresponding to extrema of H[(I,i] satisfy 

aH/a(I,r(x) = -V2(I,i + rrLi -bAi i l i 2 ( I , i l ( I , i 2  - hi = 0. (13) 
To locate droplet extrema, we first identify spatially uniform solutions to equation (13). 
Although there are many different uniform extrema, the ones of interest to us are of the 
form 

+!')(XI =+e:, (14a) 

(I,P)(x) = $le: + 1//2eB, (146) (Y = 2, . . . , s - 1. 
Note that there is one solution (14a) that is parallel to the external field hi and (s - 1) 
that are not. 

When h = 0, all s solutions in equation (14) are degenerate. For r > 0 ( p  < p c ) ,  the 
only stable solution is +hi= 0. For r = -p2 < 0 ( p  > p c ) ,  solutions of the form (14) with 

(I, = 2p2/w + h/p2+O(h2), 

$1 = h/p2+O(h2), 
(15) 

4 2  = 2p2/w -2h/p2 +O(h2), 

are stable with energies 
2 

E ( ' ) =  (l/il)H[(I,~"]= -Y(S - 1)p6 /w2-  (S - l ) p 2 h / w  + O(h2), 

E ( ~ ) = ( ~ / ~ ) H [ I L ~ ~ ) ] = - ~ ( S - ~ ) ~ ~ / W ~ + ~ ~ ~ / W  +O(h2), 
(16) 

where il is the volume and where only terms linear in (s - 1) have been retained. Thus 
we see that for h > 0 E " )  < and the solution (14a) is stable, whereas for h < 0 

and the second solution (146) becomes the stable one. This is the same result 
as was found by Harris and Lubensky (1980) using the untruncated form for H. 

Now the system can condense globally into solution (14a), but not into solution 
(146) since 2, - e~p(-H[(I ,~l)+ 1 ass  + 1 (equation (5)) and E ( ' ) +  0 as s  + 1 but E ( = ) %  0 
as s .+ 1. Thus, for h < 0, the system is constrained to be in phase 1 at spatial infinity and 
is metastable. Droplets of any of the (s-1) other phases may form, however, 
contributing to Im 2. Droplet solutions, $l"' (x), to equation (13) are thus solutions that 
exist for r < 0 and h < 0 and satisfy &"(x - x o )  - ( I , ! m )  for / x  - x0I < R o  and @ * ' ( x  - 
xo)  - $!'I for / x  - xoI > Ro, where R o  is the radius of the droplets and xo marks the centre 
of the droplet. 

& (1) > &(a) 

The energy of a droplet is thus 

E ~ ( R ) = - A E R ~ + ~ R ~ - '  (17) 
where AE = E ( ~ ) -  E ( ~ )  and (T is the surface tension, which is proportional to a conden- 
sation energy times a correlation length. The surface tension is finite when h + 0 and is 
proportional to ( p 6 / w 2 ) / p  = p 5 / w 2 .  Minimising E D  with respect to R, we obtain 

where D is a constant. This result was also obtained by Harris and Lubensky (1980). 
Writing $ i =  6, + & in equation (9), we obtain 

(3 - 1) e x p ( - ~ [ ~ ~ )  ~ 4 ,  exp(-jlMil,$l,) (20) 
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where we have kept only quadratic terms and where the factor (s - 1) comes from the 
(s - 1) solutions $I"'. The stability matrix M&, x ' )  is given by 

(21) 

The vectors e: and e: span a two-dimensional subspace. The set of eigenfunctions of M 
with components in the (s -2)-dimensional subspace orthogonal to the (e:, e:) 
subspace will have eigenvalues large compared with zero. In the ( e : ,  e? )  subspace itself, 
there will be two sets of eigenfunctions: one with eigenvalues near zero, including the 
translational eigenfunctions q 5 ~ , ~  = d&/dxo,i with zero eigenvalue, and a second set with 
eigenvalues large compared with zero. To find the exponent e', we need only consider 
eigenvalues of M near zero (that is, those that tend to zero as h + 0). So we can in this 
way ignore all but the first set of eigenvalues in the (e:, e?)  subspace. 

The problem of determining 8' thus reduces identically to the analogous problem for 
the Ising model considered by Langer (1967) and Giinther et a1 (1980), and we find 

MIIS' = [--v2-p2+ W ( $ ~ + & ) ] S ~ I , -  w[elel,+1+ePe?t,J2]. 1 1 -  

where 

id(d - 3), d = 2 ,4 ,6 ,  
d = 3 ,  

90 3 d = 5 .  

This expression is valid as long as fluctuations near the percolation critical point can 
be ignored. If they are important, renormalisation group recursion relations near the 
critical point can be used to map the system to a renormalised length p-' - 1. When this 
operation is carried out, we have (Houghton and Lubensky 1980) 

Substituting these expressions for Im F(-lhl) into equation (8) and evaluating the 
integral by steepest descent for large n gives equation (2) with 

B(P -Pc) = N ( p  -Pc)" I i  (25) 
and 

( (1/2d)( l+4d -d2), d = 2,4 ,6 ,  
I 

so that 8' = for d = 2, $ for d = 4 and -E for d = 6. 
Two comments regarding equation (26), the principal result of this paper, should be 

made. Firstly, 8' depends only on the dimension d, and is unrelated to any of the critical 
exponents associated with percolation. Secondly, the curious variation of the exponent 
8' with dimension is due to the appearance of additional logarithmic divergences in the 
calculation of fluctuations about the critical droplet, which when exponentiated change 
the value of p in equation (22) (Giinther et a1 1980). These additional divergences exist 
only when d is an odd integer, hence the nature of the results for p and 8'. We have no 
physical interpretation for this behaviour at present. 
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The most important corrections to the form for C ( n )  given by equation (2) come 
from the O(h)  corrections to the Ihl-d+l power law in the exponential in equation (22). 
In terms of In C ( n )  these give contributions proportional to n , . . .  in 
addition to the n '-I" and 8' In n terms we have already discussed. The coefficients of 
these terms are non-universal and for d > 2 will be large compared with the prefactor. 
This may make it difficult to extract 8' from Monte Carlo data for any d other than two. 

Finally, we note that the result (22) is to a large extent independent of the form of the 
interaction in (10). Thus the inclusion of quartic or higher-order terms will not change 
the exponent e', and so the result can be expected to hold well away from p c .  More 
generally, the form (22) and the exponent p in equation (23) do not depend on the 
symmetry of the interaction (10) (except that it is discrete) only in the properties of the 
critical droplet. This universality has been discussed by Giinther et a1 (1980), who also 
give arguments which suggest that the inclusion of two-loop and higher fluctuations 
about the critical droplet will leave our results unchanged. 

1 - 2 / d  n l - 3 / d  , 
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